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ABSTRACT
Microblogging platforms such as Twitter have been recently
frequently used for detecting real-time events. The spatial
component, as reflected by user location, usually plays a key
role in such systems. However, an often neglected source of
spatial information are location mentions expressed in tweet
contents. In this paper we demonstrate a novel visualization
system for analyzing how Twitter users collectively talk about
space and for uncovering correlations between geographical
locations of Twitter users and the locations they tweet about.
Our exploratory analysis is based on the development of a
model of spatial information extraction and representation
that allows building effective visual analytics framework for
large scale datasets. We show visualization results based
on half a year long dataset of Japanese tweets and a four
months long collection of tweets from USA. The proposed
system allows observing many space related aspects of tweet
messages including the average scope of spatial attention of
social media users and variances in spatial interest over time.
The analytical framework we provide and the findings we
outline can be valuable for scientists from diverse research
areas and for any users interested in geographical and social
aspects of shared online data.

Categories and Subject Descriptors
H.5.m [Information Interfaces and Presentation]: Mis-
cellaneous
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1. INTRODUCTION
Twitter and other social media are frequently used to

express opinions or to share reports of daily life activities.
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They have been also a common target for various kinds of
analyses including detecting real-world events [32] or inves-
tigating the process of information spread among users [7].
Utilizing spatial information has been of particular interest
in these studies [2, 17] as it is possible to estimate locations
from where tweets originate. Due to high immediacy of
tweets, timely detection of local events has become feasible
by detecting spikes of similar tweets coming from same neigh-
borhoods [33]. What has been however often neglected in
spatial-focused analysis of microblogging, is the usage of loca-
tion mentions within tweet content. These may either relate
to an area where some event happens or to the locality of
personal concern of a Twitter user. A user may for example
mention location names in tweets to express her travel plans,
to reminisce places she visited, to discuss current events or
just to refer to some interesting places.
In this paper we introduce the concept of collective spatial

attention. We define spatial attention as the geographic area
of interest and focus of an online user. When treated collec-
tively, the spatial attention of many interacting users forms
collective signal that can assume different types of patterns.
Users at the same time may align their attention towards the
same locations due to the occurence of sudden events, shifts
in calendar seasons or due to population migrations. Note
that the concept of collective spatial attention is orthogonal
to the topical and temporal attention [15] that have been
recently studied on large collections of user-generated content
such as Twitter datasets. Analyzing collective spatial atten-
tion offers information complementary to the standard social
media analysis and should help us in better characterizing
spatial aspects in online media and its dynamics.
We then propose a dedicated visual analytics system that

extracts location references from large datasets of messages
and portrays them en masse to investigate and attract collec-
tive spatial attention. For example, it is possible to compare
opinions about particular place expressed by nearby or far
away users. Or, in another example, one can find location
pairs connected by common spatial attention of tweeting
users. In the design process, we have also considered the
temporal factor with the aim to track and understand varia-
tions of spatial attention over time. Thus, the visualization
framework we create allows not only drawing horizons of
spatial references but also empowers users to detect temporal
variances of interesting patterns related to places.

Since spatial perception and thinking are strongly related
to country geography and particular culture we study two



countries that differ significantly in terms of size, shape, pop-
ulation and culture: USA and Japan. Our field of study is
the portion of USA and Japanese tweets collected over the
time frame of, respectively, 6 and 4 months in 2013. Using
the visualizations on the provided datasets we exhibit several
interesting findings that shed new light on the characteristics
of spatial attention of social media users in both countries.
Although many of the findings are common to both datasets,
we notice several differences. The system is available on-
line [37, 38] for anyone interested in quick overview or in
detailed exploration of spatial aspects in shared messages.
We would like to emphasize that tweets tend to be noisy

and lack comprehensive context for small scale analysis. Even
if nowadays natural language processing techniques allow
tagging spatial expressions, still, extracting information of lo-
cation mentions, disambiguating and mapping them precisely
are difficult and prone to errors. On the other hand, aggregat-
ing multiple spatial expressions from numerous tweets should
offer more trustworthy view of common spatial thinking of
online users. The insights about the character of collective
spatial attention could then assist us in better understanding
spatial references within individual tweets.
The reminder of the paper is structured as follows. After

reviewing the prior literature in Section 2, we introduce our
datasets and outline data models in Section 3. This section
also contains the general overview of the visualization systems
we use, although, some of their technical details are deferred
to Section 5. Section 4 is the key part of this paper and
contains the overview of our findings. We conclude the paper
in Section 6.

2. RELATED WORK
The rise of online social networks makes it easy to collect

large amounts of data on human behavior, characteristics and
social connections. Twitter data analytics is then frequently
used in social sciences utilizing numerous traces of daily
life activities left by users [34, 17]. Extensive work has
been carried so far to exploit large collections of personal
messages crawled from Twitter as shown in this survey [12].
The heterogeneous nature of topics discussed in Twitter
provides valuable data to perform large scale analysis of
societal interests, particularly, from spatial viewpoint which
is the focus of this paper.
In this work we focus on spatial factors in microblogging.

Studying spatial aspects is quite important. In fact, daily
communication about the world seems to revolve around
the space. This becomes understandable when considering
that the global news media mentions any location every 200-
300 words, thus, more than any other information type [18].
Even access to information is largely associated with spatial
attributes as over a quarter of web searches contain geo-
graphic terms and 13% of all web searches have geographic
character [11].
Twitter presents an effective playground for socio-spatial

studies. Since early 2010 explicit GPS tags can be specified
for tweets, thus resulting in a large dataset of messages with
location stamps. However, not every message has an explicit
location stamp. Hence, location inference has become one
of the most prolific domains of study, either done by mining
the social graph [3, 9] to utilize the location of friends, or
by parsing textual tweet content as in [8]. The latter work
introduced a concept of local words, later extended in [16, 6],
and used them to infer home locations of Twitter users.

This last approach also leads to the application of inference
methods based on topic models in [10, 14, 36]. Statistical
models allow inferring home location from the user history,
tags and other attributes as shown in [13, 27] and can even
serve for predicting user movements [9]. In [21, 20, 31]
both social graph and content processing are used to infer
fine-grained user locations, even when the users choose to
keep their location information private. All these works
demonstrate that it is possible to determine user location
using public data shared on social networks, usually, on
Twitter.

Prior research has also emphasized the usefulness of social
networks and especially Twitter for extraction of real-time
information by detecting events [35, 30, 19]. Also, studies
in [23, 1, 32] provide a suite of visualization capabilities to
explore tweets from different dimensions relating to specific
application like fire combat and earthquake detection. More
generic platforms have been designed with visualization tools
to analyze data in spatial perspectives [26, 24, 25].
To the best of our knowledge, there are no similar re-

searches nor visualization systems that would collectively
portray location mentions in microblogs, analyze their usage,
characteristics, relations and dynamics in order to provide
new kind of spatial knowledge. The current work thus pro-
vides a novel type of spatial analysis, which, as we believe,
can complement the above mentioned studies.

3. DATA MODEL
We are particularly interested in space-referring tweet mes-

sages from which we can extract spatial expressions. The
spatial expressions allow us to categorize tweets into those
about far away locations and those about close locations
as well as to locate them on a map after prior disambigua-
tion. We will describe the datasets we use in Section 4.1.
The following details our data model based on space-related
information extraction from tweets.

3.1 Data Structure
Each tweet is first represented as a tuple of 4 attributes as
follows:

< user id, tweet content, timestamp, location stamp >
The user id is the Twitter identification number, the tweet
content is the text of the tweet, the timestamp is the time
when the tweet has been published on Twitter, and the loca-
tion stamp is the GPS coordinates from where the tweet has
been posted. All the tweets crawled to build our datasets
have location stamps provided by tweeting users. Note that
although the GPS coordinates might be accurate when some-
one posts on Twitter via a smartphone using the official
Twitter application, they might be rather approximate for
a traditional web user posting from a PC. That is why in
this paper we are interested only in the distances greater
than 1km. Based on the above listed attributes, the infor-
mation on location is extracted and represented by the two
additional attributes computed from the basic attributes:

< location mention, location diff >
The location mentions are extracted and disambiguated

from the tweet content by applying entity-recognition tech-
niques (described in Section 5.3). The location diff is com-
puted for each location mention as the euclidean distance
between the location mention and the location stamp. In
the rest of the paper, we will use the term spatial expression
to name any spatial annotation given by the NLP parser



containing one or few consecutive words. From the spatial
expressions our system infers only one location mention for
each tweet. This choice is discussed in Section 5.3.
The above data model is used to contrast two key spatial

attributes which characterize tweets in order to represent
novel kind of information about the global and per user
behavior of microblogging users. Intuitively, the attribute
sextuple should allow answering simple but fundamental
questions of the following type:

• What do people at the same places tend to say? (loca-
tion stamp)

• What do people tend to say about the same places?
(location mention)

• What do people tend to say about places located at
the same distance from them? (location diff )

3.2 Space Mention Extraction
We consider only tweets with spatial expressions that could

have been extracted. Note that while there are ready spatial
taggers for English, we are unaware of any credible tool for
extracting and mapping spatial expressions in Japanese lan-
guage. Therefore, for English we use the Stanford CoreNLP
tagger [22], while for the Japanese dataset we do the locations’
extraction from text by ourselves.
We consider only location mentions that correspond to

a unique specific place or area identified and localizable in
space by GPS coordinates. For instance, the spatial ex-
pression “at the University” without any further context
cannot be disambiguated and thus no location mention will
be found, whereas the expression “at Kyoto University” will
be disambiguated.

3.3 Snapshots of Visualizations
The objective is to enable users to see and reason about

the spatial attention of tweeting users based on:

• the location diff and location stamp (Figure 1)

• the location diff and time stamp (Figure 2 and 3)

• the location mention and location stamp (Figure 4 and 5)

• the location stamp and location mention on the USA
geographic map (Figure 6(a) and 6(b))

The following visualizations are 2D plots with colored cells
in the form of a heat map. The cell color represents the
intensity with which tweets in our dataset refer to that cell.
According to the location attributes of a tweet t, the cell Ci,j

has a probability P (Ci,j |t) such that t ∈ Ci,j . Intuitively,
P (Ci,j |t) is the amount of its probability mass that the
tweet assigns to the cell. The probability depends on the
mapping of the location mention from natural language to a
computable value, usually, GPS coordinates of an area or a
point. The intensity of a cell Ci,j is the sum of probability
of all the tweets in the dataset T that refer to Ci,j , that is,
I(Ci,j) =

∑
P (Ci,j |t) : ∀t ∈ T .

4. VISUAL DATA ANALYTICS
This section first describes our visualizations and design

choices we made. We then discuss findings we could obtain.
All the visualizations we used are shown in 2D panes in

the form of heat maps with colored cells. Cells have different

meaning in different graphs as it will be discussed in the
following subsections. The color of each cell is selected based
on the intensity with which tweets in our dataset refer to
the particular cell. Below each graph, we display the color
scale ranging from dark blue (the lowest intensity) to dark
red (the highest intensity). From the set of tweets associated
to each cell, the system computes the most representative
words among the tweet contents. Computation is described
in Section 5.2. The top-30 representative words are displayed
in pop-up window when a mouse passes over any segment.
Moreover, for receiving more details the user can click on any
cell or segment to open a separate window with the top 100
representative words with their scores and the exhaustive
list of tweets in that cell or segment. In Figure 1, 2 and 3,
the gray buttons on top and right sides of the graphs relate
to the column and line aggregates of cells, respectively. All
the graphs shown in this section are built from the same
datasets described in Section 4.1.

4.1 Experimental Datasets
We first report the overall statistics of the data we use.

The Japanese dataset has been built retrieving 31.6M (mil-
lions) tweets posted from Japan between July 21, 2013 and
January 12, 2014. The USA dataset contains 198M tweets
created between September 25, 2013 and January 17, 2014.
Unfortunately, due to technical limitations the data crawl-
ing was disrupted at certain times. This explains the blank
sections in Figure 2(a) from August 11 to 14, October 13
to 17, December 13 to 15 and December 25 to 28, and the
two blank sections in Figure 2(b) from October 11 to 29 and
December 13 to 27.
We applied a preprocessing step that removed all the tweets

not in Japanese or English using the language detection
method based on Naive Bayesian filter (found to work with
nearly 99% precision1). As a result, the dataset contains
roughly 25M tweets written in Japanese in the Japanese
dataset and 158M written in English from the USA dataset.
Next, from these data we singled out all those tweets that
mention geographic locations. For the USA dataset 30M
tweets were annotated with spatial expressions by Stanford
CoreNLP tagger and among them we consider 4.3M that
where successfully disambiguated by our system and situated
in the USA. For the Japanese dataset 684K tweets have been
found to contain location mention based on the list of the
names of the 47 prefectures. The users tweeting with location
mentions that were considered in our study represent 22%
of the total number of Japanese users and 28% of the USA
users within the dataset.

4.2 Distribution of Spatial References
The first issue we investigate is the horizon of spatial atten-

tion of microblogging users. Since there are many locations
from which tweets could be written and/or to which they
could refer, plotting all the combinations in one graph would
not be very efficient. We then visualize spatial attention
through aggregating tweets based on the differences of their
location mentions to location stamps.
As shown in [4, 9] users are mainly interested in close

locations around their home and work. For an average user,
the majority of her daily life events or even weekend trips is
expected to be within rather small distance from her usual
place of accommodation. Even during the trips to far away
1http://code.google.com/p/language-detection

http://code.google.com/p/language-detection


locations users are expected to tweet more about places they
are actually visiting rather than some other places. This
would then suggest rather short span of spatial attention.
However, in the globalized world, information on events
occurring in far places is easily and quickly reachable. In
addition, it is relatively easy now to travel and migrate these
days. Thus, we could expect that these factors would rather
stretch the average distance of the spatial attention of users.
To shed more light on these aspects, we provide our first

visualization demonstrated in Figure 1. It portrays the aver-
age location diff of tweets depending on their location stamps.
For the ease of analysis, the tweets are naturally clustered by
the prefectures for Japan or states for USA, from where they
originate. Therefore, the horizontal axis represents the pre-
fectures/states which include disambiguated location stamp
attributes.
Note that it would be difficult to visualize the spatial at-

tention using the linear scale. To show all possible distances
including far away ones the vertical axis would have to be
stretched thus making the data about close neighborhoods
difficult to see and analyze. Therefore, the location diff is
given in logarithmic scale in ordinate in order to visually por-
tray data over wide range of space. The choice of logarithmic
scale was also driven by the study [5] showing that users
tend to switch to a larger spatial granularity when referring
to far locations.
At the bottom of each graph, the blue histogram shows

the numbers of tweets issued from each prefecture/state. As
the numbers are used for normalizing data we display them
for reference in each corresponding column. In addition,
for the ease of analysis we show the blue lines on the right
hand sides of both graphs in Figure 1. They correspond to
the aggregate location differences over the total amount of
tweets. These lines thus display the aggregate distribution
of location differences within the whole dataset.
Another design issue relates to ordering of states or pre-

fectures on the horizontal axis. These should be arranged
in order to better capture proximity-driven spatial patterns
following the intuitive reasoning that nearby locations ex-
hibit many commonalities. We use here the standard region
division for both countries to group the corresponding ad-
ministrative regions (i.e., prefectures or states).
As mentioned above, we consider the data below 1 km for

location diff as not relevant due to the inherent imprecision of
the GPS coordinates retrieved via Twitter. All such tweets
are then collapsed and displayed as a single cell in each
column right above the horizontal axis. Above the 1km limit
we can observe that, on average, the attention of users seems
to have some correlation with geographical distance. For
the Japanese dataset (Fig. 1(a)), the spatial attention falls
within the range of 50 to 2000 kilometers. Note that the strict
lower bound in the spatial attention in between 10 to 50 km
for Japan is a consequence of the prefecture granularity we
adopted. Comparatively, in the USA dataset in Figure 1(b),
the spatial attention covers the whole range with a strong red
bottom line, indicating that much of the Twitter attention is
local, following the assumption that people tweet about their
direct environment as shown in [32]. Next we can observe
two main landmarks, the first between 5 to 10km, and the
second between 500 to 3000km (see the blue line on the right
hand side of Figure 1(b) as evidence). By analyzing the top-
words in the corresponding horizontal segments, we found
that the first is related to daily life activities as evidenced by

representative words such as restaurant, grill, home, etc. The
second seems to be related to national events with a clear
domination of sport events and, in many cases, American
Football. This confirms the notion of local words introduced
in [8]. Our proposed visualization system can then allow
studying, enriching and validating such hypotheses.
Next, we look for any isolation effect in our datasets. In

the Japanese dataset only the two most distant prefectures,
Hokkaido (the farthest north in Japan) and Okinawa (the
farthest in the south) have any tweets about them that
come from further away than 2000km (see the first and the
last columns in Fig. 1(a)). Both are actually occupying
whole islands. Similarly, the states of Hawaii and Alaska
(see the two last columns in Fig. 1(b)) have a lower bound
above 2000km. In addition, both these states have few or
no tweets coming from less than 1000km away from them.
The existence of isolated regions conforms to the topology
of Japan and USA where these prefectures and states are
separated and lie furthest from the main land mass of the
countries.

4.3 Referring to Space over Time
The purpose of the next data view is to analyze how the

spatial attention changes and evolves over time. We would
expect some kind of calendar effect due to different activities
and more free time that users have on average on weekends.
Also, one could imagine the possibility of certain seasonal
effect such as summer season being visibly different from
autumn and winter.
To study this we use another visualization to display the

changes in aggregated spatial references over time. The
graphs in Figure 2, show the value of the location diff at-
tribute for tweets arranged over time with daily granularity.
The location diff values are given in ordinate in logarithmic
scale and time stamp values are shown on the abscissa. Below
the graph we also display the curve of the total number of
tweets crawled (in blue) and the percentage of the tweets
with location mentions (in orange) to compare the visualiza-
tion on particular day with the total amount of data used to
visualize that day. Note that the data are now portrayed on
aggregate over all the states and prefectures unlike in Figure 1
where it was grouped according to country administrative
divisions.

Metropolis effect.
The most striking pattern for the graphs in Figure 2 are

the horizontal red lines all along the time period, especially,
obvious in the Japanese graph. This is a consequence of the
spatial attention between the populated metropolises.

For the Japanese dataset in Figure 2(a), three main lines
are seen:

• around 390km for Tokyo↔Osaka, Kyoto, Kobe

• around 850 for Tokyo↔Fukuoka

• around 1,500km for Tokyo↔Okinawa

That is confirmed by the top words found in their respective
horizontal segments. For the USA dataset in Figure 2(b),
there is only one obvious horizontal line, which in fact is due
to our mapping of the location mention of USA as a country
that is mapped to the GPS coordinates of the middle point
of continental USA.



(a) Snapshot of Japanese dataset available online [39] (b) Snapshot of USA dataset available online [40]

Figure 1: Heat map of location differences per prefectures or states

(a) Snapshot of Japanese dataset available online [41] (b) Snapshot of USA dataset available online [42]

Figure 2: Heat map of location differences over time with 1.5e−3 limit z-value

Weekend Pattern.
The weekend pattern (especially visible in the USA dataset)

is characterized by the vertical lines of stronger attention
in the two previous days just before the vertical dashed
lines displayed to indicate week boundaries. These two days
correspond to Saturdays and Sundays that are characterized
by a periodic increase in the range of the spatial attention.
The top representative words that we examined actually
reveal the tendency of users to speak about their trips or
travel plans during weekends, which explains why the spatial
attention focused more on farther distance than that of the
weekday activities (notice the longer horizontal yellow color
lines on weekends).

Summer holiday pattern.
Especially visible in the Japanese dataset, during the sum-

mer period in August, the high ratio of tweets mentioning
events between 10 to 900 kilometers is more constant through-

out the weeks. The previously described weekend effect seems
to fade out in this period since August is an important cere-
monial and vacation period in Japan called “Obon” during
which people often travel throughout the country and fam-
ilies tend to reunite. From the top words we confirm that
users tend to talk about their vacation destinations or plans
independently of the weekend period.

Place-based Filtering.
The visualizations shown in the graphs in Figure 2 allow

also users to render the views based on the name of particular
state or prefecture. Correspondingly, Figure 3 is the result of
such selection that keeps only the tweets either originating
from Tokyo or those mentioning Tokyo.
This allows spotting particular events linked to this lo-

cation, such as the earthquake that occurred on August 8,
2013 in Nara and which caused concern among the people of
Tokyo.



Figure 3: Heat map of location differences over time
for Tokyo available online [39]

4.4 Origin and Destination of Space Mentions
The two Figures 4(a) and 4(b), available online at [43],

contrast the origin (location stamp) of tweets with their
spatial focuses (location mention). They show on the abscissa
the proportion of tweets issued from a given place that
mentions places as arranged in ordinate.
The data shown in Figure 4(a) and 5(a) are row-normalized.

Thus, when looking at a given line l, one can see the proba-
bilities that a tweet mentioning the place l may come from a
place listed in column c. Intuitively, this shows the interest
of users from a prefecture or a state c in the prefecture or a
state l. Figure 4(b) and 5(b) portray the same data but in
the column-normalized way, meaning that they visualizes the
probabilities that a tweet from a place in column c mentions
place at any line l. Intuitively, this data could be interpreted
as the popularity of a prefecture or state l among users from
a given prefecture or state c. The prefectures or states are
ranked from left to right and top to down, following the order
described previously in Section 4.2 to exhibit the effect of
vicinity.
Diagonal. An immediate observation from both figures

is the pronounced diagonal on the graphs which highlights
the fact that people tweeting from a given prefecture or state
are most likely to tweet about the same prefecture or state.
This observation supports the concept of “here” dominating
the spatial attention, similar to the concept of “now” in
time-based analysis [15]. “Here and now” would then seem
to be what Twitter users mainly care about.
Influential places. We can observe few places with a

wide range of influence and high popularity. Tokyo and
Osaka appear to receive relatively high amount of spatial
attention due to their role as economical, transportation and
political hubs. Figure 4(a) shows that tweets from Tokyo and
Osaka significantly mention every prefecture. Conversely,
Figure 4(b) demonstrates that every prefecture significantly
mentions Tokyo and Osaka. The situation is similar in the
USA dataset for New York, Florida, Texas and California as
shown in Figure 5(a) and 5(b).
Attractive places. Some places continue to be men-

tioned despite having rather moderate or low population
count and economical role in the country. Okinawa (pop: 1.3M,
rank: 32th) and Hokkaido (pop: 5.7M, rank: 7th) are such
popular prefectures about which people tend to tweet from

different places, even from far away ones. This is because
both islands actually belong to the most popular touristic
places in Japan. This is shown in Figure 4(b) where both
Okinawa and Hokkaido related lines are featured by numer-
ous green cells. Note that in Figure 4(a) the columns of both
Okinawa and Hokkaido are mostly blue showing a small
interest in other prefectures than themselves.
Isolated places. On the other hand, isolated places are

mentioned only by local or nearby located users. For example,
looking at the line of Shimane on Figure 4(b), one can see
that only Tottori and Yamaguchi, which are close neighbors,
significantly mention Shimane prefecture. Similarly, USA
states such as Mississippi, West Virginia, North Dakota,
Rhode Island, and Delaware exhibit the same pattern.
Clusters of interconnected places. The last observa-

tion is the effect of geographical proximity and economical
dependence on the spatial attention depicted by square of
mutual attention in both column and row normalized graphs.
For example, there are many tweets from and to Saitama,
Chiba, Tokyo and Kanagawa since they are adjacent pre-
fectures in the same metropolis. Also, a cluster such as
Tokushma, Kagawa, Ehime and Kochi corresponds to the
four prefecture constituting the Japanese island of Shikoku.

4.5 Geographic Distribution of Location Men-
tions

Lastly, we show the two Figures 6(a) and 6(b), available
online at [45] and [46] in order to portray spatial attention
on the actual USA map. Figure 6(a) colors cells depending
on the amount of tweets with any location mentions that
are issued from those cells. On the other hand, Figure 6(b)
colors cells depending on how often they are mentioned in our
datasets. We can notice that the two graphs are not equal.
Location mentions are actually more clustered suggesting
that while people tweet from large variety of places the
amount of locations they mention is more limited than the
places they tweet from. Note however that the red cells in
the middle of each state correspond to the state granularity
spatial references due to our disambiguation settings. The
strong intensity in these cells could be actually distributed
uniformly among all cells covering the given state area if
more precise mapping technique is adopted. Note also that
the graphs can be time adjusted so it is possible to see the
visualizations for a given selected week.

5. METHODOLOGY
Our system has been implemented in SCALA programming

language for the back-end. We have used D3 graphical library
for the front-end. To handle Japanese text processing tasks
we used Kuromoji 2 Japanese morphological libraries, while
Stanford CoreNLP [22] was used to parse English texts and
location detection. We are aware that there might be better
name entity recognizers specially designed to deal with the
noisy nature of Twitter [29] (their adoption is left for future
work). We give the formal definitions and explain the key
computations of our visualizations in the following sections.

5.1 Probability Mass Function
According to location mention in a tweet t the cell Ci,j

is associated with a probability P (Ci,j |t) such that t ∈ Ci,j .
When the spatial expression is a point in space, P (Ci,j |t)→
2http://www.atilika.org/

http://www.atilika.org/


(a) Interest of X in Y (row-normalized) (b) Popularity of Y among X (column-normalized)

Figure 4: Heat map origin-target of tweets from/about prefectures in Japan available online [43]

(a) Interest of X in Y (row-normalized) (b) Popularity of Y among X (column-normalized)

Figure 5: Heat map origin-target of tweets from states and about states in USA available online [44]

{0, 1}. In the visualizations proposed in this paper, the loca-
tion mention is always one specific point in space due to our
disambiguation mechanism. Mentions of states, prefectures,
cities and other kinds of spatial areas that we retrieve are
then reduced to their central points. That choice is of course
not optimal and has been decided due to efficiency reasons.
We note however that our model can be easily extended to
use probabilities. For example, to map an area such as a
state that can span multiple cells, the weight of a tweet can
be distributed following a probability mass function P over
several cells covered by the state area.

5.2 Ranking Top Words
For each visualization, the system provides a ranking of

the words for any cell on the heat map. In addition, the
system provides a list of top-words for group of lines or group
or rows in a heat map called segment. The goal is to return
a top-k list of the most characteristic words for the area of

given spatial attention delimited by the segment’s boundaries.
We compute term scores by adapting TF-iDF weighting
scheme. Intuitively, TF-iDF would assign high scores to
terms that often appear in tweets associated with a given cell
(or segment), while appearing infrequently in other cells (or
segments). We modify TF-iDF using probabilities instead
of counts and we introduce two hierarchical levels defined
for cell and segment. We describe them in the subsequent
paragraphs.

Cell.
Formally, t ∈ T is a tweet characterized by a bag of words

Wt and T is the set of all the tweets in the dataset. Our
visualizations are heat maps divided into cells delimited by an
interval of values on the x-axis and on the y-axis. Let CELLS
be the set of all the cells in a heat map and C ∈ CELLS be
one cell in the heat map. Then we use Ci,j to denote a cell
in position i, j in a heat map.



(a) Tweets mapped to their location stamp [45] (b) Tweets mapped to their location mention [46]

Figure 6: Geographic distribution of tweets according to their location stamp and mention

The score to rank a word w in a cell Ci,j based on the
whole set of tweets T is:

Score(w, Ci,j , T ) =∑
t∈T

P (Ci,j |t) : w ∈Wt∑
t∈T

P (Ci,j |t)
×log |CELLS |

|C ∈ CELLS : ∃t ∈ C : w ∈Wt|

When we rewrite the previous equation in natural language
it would be:

Score(w, Ci,j , T ) = A

B
× log C

D

where:

A is the sum of the weights of the tweets containing the
word w in the cell i, j

B is the sum of the weights of all the tweets in the cell i, j

C is the number of cells in the graph

D is the number of cells in the graph with a tweet containing
the word w

Segment.
In the visualization displayed in Figure 2, the gray buttons

on the top and on the right-hand side represent segments,
which are regarded as virtual documents. The segments
are either row-wise or column-wise. They are sets of cells
that span respectively, all columns covering the width of the
selected rows, or all rows covering the width of the selected
columns. For instance, the top left gray cell in Figure 2 with
label “Jul 22” gathers all the cells between column July 22 to
28 on every row. We compute a second level TF-iDF score
to rank top words in each segment. For this a segment is
considered as a virtual document. The content of a virtual
document is the set of words WSi built from all the words
of the cells in that segment.
Let SEG be the set of all the horizontal segments in a

heat map and S ∈ SEG be one horizontal segment in the
heat map. The horizontal segment is a set of all the tweets

appearing in all the cells in several adjacent lines. Then,
Si is a horizontal segment in position i in a heat map. We
compute the weight of a word w in a segment as the sum
of the weights of the tweets in those segments in which the
word w appears.

Score(w, Si, T ) =∑
t∈T

P (C|t) : ∀C ∈ Si : w ∈WC∑
t∈T

P (C|t) : ∀C ∈ Si

× log |SEG|
|S ∈ SEG : ∃t ∈ S : w ∈Wt|

The vertical segments are computed in the same way with
SEG denoting in this case the set of all the vertical segments
and S ∈ SEG being one vertical segment.

5.3 Location Disambiguation
For the reasons of simplicity, efficiency and to maintain

good precision, we assume in our model that a tweet can point
to only one location mention. Therefore, if the name entity
recognizer annotates several location expressions within the
same tweet, we assume that they refer to the same real world
location. First, it is reasonable since Twitter messages are
short. Second, the disambiguation is costly. Thanks to this
simplification only one disambiguation per tweet is required
exploiting all the spatial expressions at once. Otherwise, the
system needs to start as many disambiguation processes as
the number of elements in the power set of spatial expressions
of the tweet, which becomes inapplicable in the context of
large-scale data. Third, even disregarding the efficiency
problem, choosing among the results of each disambiguation
is not trivial. For example, consider a tweet with three spatial
expressions and two real geographical locations mentioned
by the user as below:

“I am moving from Paris
1

, TX
2

to Tokyo
3

.”

There would be 8 possible sets of parameters for the disam-
biguation. For example <Paris> returns Paris in France,
<Paris, TX> returns Paris in Texas, <Tokyo> returns Tokyo



in Japan and for <Paris, TX, Tokyo> the system would
make an arbitrary choice between the preceding possibilities
depending on the implementation.

Disambiguation workflow.
Our work benefits from the previous study [28], in which

the authors used a gazetteer lookup and the disambiguation
of locations based on the closest-country and the level of
place importance. With these settings they could achieve
77% precision suggesting that such simple techniques work
reasonably well. For the USA dataset, we then use the same
techniques as the part of our disambiguation mechanism for
the reasons of efficiency in the large-scale data processing.
We manage to disambiguate 62% of the tweets that contain
spatial expressions using GeoNames3 as our gazetteer. In ad-
dition, to increase the coverage, we perform another lookup
in a location index ranked by popularity. We have built this
index by finding and extracting any geotags appearing in
tweets and ranking them by their popularity. The applica-
tion of this additional index allows us to disambiguate 8%
more tweets which were not found by Geonames. Note that
geotags within tweets are typically added by check-in appli-
cations such as Foursquare, and are quite reliable. Whenever
a tweet contains a geotag in its content, we can assume
that its location mention can be simply mapped to the GPS
coordinates of the tweet (i.e. its location stamp). The addi-
tional index with location mention-GPS pairs found using
the geotags harvested from our dataset complements the
main geographical index with smaller yet popular locations
that cannot be found by gazetteers.
Figure 7 shows the workflow to map a tweet with location

expressions to a disambiguated location mention associated
with GPS coordinates. First, in the same fashion as in [28]
we filter out noise and apply heuristics to detect standard
patterns used when humans write about locations like a city
name followed by a comma and two capital letters denoting
state name, to refine the grouping of words in locations
expressions. Then we query our gazetteer, Geonames, with
location expressions and order the returned results by their
population counts. Depending on the distance from the
location stamp (in the USA or close to the border in Mexico
and Canada), and the nature of the location disambiguated,
which can be either a space point or a large area, we consider
three cases from left to right (see Figure 7). First, if the
location mention is an area (very often a state) in North
America, and if the tweet originates from this area, the
tweet is considered local and the location mention GPS
will be the location stamp GPS. Otherwise, that is, if the
tweet originates from outside of the area (state), the location
mention is mapped to the GPS coordinate of the midpoint of
the state. Second, if the location mention is outside of North
America, the location mention will be the middle point of
the location disambiguated (country, mountain, etc.). Third,
if the found location is a specific point in USA, we use our
geotag dictionary ranked by popularity to refine ranking.
For the Japanese dataset, we built our own parser because

of the lack of name entity recognizer to extract location
expressions from Japanese language. We limit the location
mentions to the names of prefectures in Japan for simplicity
and for the ease of visualization keeping manageably low
granularity level. Prefecture names are commonly used in

3http://www.geonames.org/

Tweet annotated

Filtering and heuristic

Gazetteer lookup

Outside NAArea in NA Point in NA

If location stamp ∈ area

Location stamp GPS

Geotag
dictionary

Middle point GPS
yes

no

Figure 7: Flow chart of disambiguation workflow

Japan when referring to space and they are, on average,
relatively small in terms of geographic size. They are also
easy to be spotted and disambiguated.

6. CONCLUSIONS
In this paper we demonstrate a novel visualization sys-

tem and a data model for studying location mentions in
microblogging. Based on the subset of Japanese tweets col-
lected over half a year and USA tweets collected over 4
months of 2013 we present several visualizations that enable
novel data analytics. We have found several interesting ob-
servations that emphasize the analytical capability of our
visualization frameworks. The observations we make and the
proposed systems help us to better understand the way in
which users refer about the space and should open way for
further, more refined analytical models.
We are aware of limitations of this work due the exploratory

character of our analysis. In case of the Japanese dataset
our observations are currently done only on the mentions of
Japanese prefecture names. Although this makes it easier to
find relevant tweets, other spatial expressions are missed.
In the future we will search for lexical field associated with

particular location diff such as ones related, for example, to
traveling activity which may be more linked to long distances
when compared, for example, to shopping activity that would
likely be associated with closer range distances. Once we
build vocabularies associated with particular distances and
with particular locations, we plan to automatically infer
location information from messages that lack any explicit
spatial expressions.
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